107 research outputs found

    Investigation of metal-insulator like transition through the ab initio density matrix renormalization group approach

    Full text link
    We have studied the Metal-Insulator like Transition (MIT) in lithium and beryllium ring-shaped clusters through ab initio Density Matrix Renormalization Group (DMRG) method. Performing accurate calculations for different interatomic distances and using Quantum Information Theory (QIT) we investigated the changes occurring in the wavefunction between a metallic-like state and an insulating state built from free atoms. We also discuss entanglement and relevant excitations among the molecular orbitals in the Li and Be rings and show that the transition bond length can be detected using orbital entropy functions. Also, the effect of different orbital basis on the effectiveness of the DMRG procedure is analyzed comparing the convergence behavior.Comment: 12 pages, 14 figure

    Phase Separation of Superfluids in the Chain of Four-Component Ultracold Atoms

    Full text link
    We investigate the competition of various exotic superfluid states in a chain of spin-polarized ultracold fermionic atoms with hyperfine spin F=3/2F = 3/2 and s-wave contact interactions. We show that the ground state is an exotic inhomogeneous mixture in which two distinct superfluid phases --- spin-carrying pairs and singlet quartets --- form alternating domains in an extended region of the parameter space

    Emergence of Quintet Superfluidity in the Chain of Partially Polarized Spin-3/2 Ultracold Atom

    Get PDF
    The system of ultracold atoms with hyperfine spin F=3/2F=3/2 might be unstable against the formation of quintet pairs if the interaction is attractive in the quintet channel. We have investigated the behavior of correlation functions in a model including only s-wave interactions at quarter filling by large-scale density-matrix renormalization-group simulations. We show that the correlations of quintet pairs become quasi-long-ranged, when the system is partially polarized, leading to the emergence of various mixed superfluid phases in which BCS-like pairs carrying different magnetic moment coexist.Comment: 4 pages, 4 figures; significantly rewritten compared to the first versio

    On the dimerized phase in the cross-coupled antiferromagnetic spin ladder

    Get PDF
    We revisit the phase diagram of the frustrated s=1/2 spin ladder with antiferromagnetic rung and diagonal couplings. In particular, we reexamine the evidence for the columnar dimer phase, which has been predicted from analytic treatment of the model and has been claimed to be found in numerical calculations. By considering longer chains and by keeping more states than in previous work using the density-matrix renormalization group, we show that the numerical evidence presented previously for the existence of the dimerized phase is not unambiguous in view of the present more careful analysis. While we cannot completely rule out the possibility of a dimerized phase in the cross-coupled ladder, we do set limits on the maximum possible value of the dimer order parameter that are much smaller than those found previously.Comment: 6 pages, 7 figure

    On the calculation of complete dissociation curves of closed-shell pseudo- onedimensional systems via the complete active space method of increments

    Get PDF
    The method of increments (MoI) has been employed using the complete active space formalism in order to calculate the dissociation curve of beryllium ring-shaped clusters Be n of different sizes. Benchmarks obtained through different quantum chemical methods including the ab initio density matrix renormalization group were used to verify the validity of the MoI truncation which showed a reliable behavior for the whole dissociation curve. Moreover we investigated the size dependence of the correlation energy at different interatomic distances in order to extrapolate the values for the periodic chain and to discuss the transition from a metal-like to an insulator-like behavior of the wave function through quantum chemical considerations

    Magneto-elastic coupling and competing entropy changes in substituted CoMnSi metamagnets

    Full text link
    We use neutron diffraction, magnetometry and low temperature heat capacity to probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to establish the origin of the entropy change that occurs at the metamagnetic transition in such compounds. We find a large difference between the electronic density of states of the antiferromagnetic and high magnetisation states. The magnetic field-induced entropy change is composed of this contribution and a significant counteracting lattice component, deduced from the presence of negative magnetostriction. In calculating the electronic entropy change, we note the importance of using an accurate model of the electronic density of states, which here varies rapidly close to the Fermi energy.Comment: 11 pages, 9 figures. Figures 4 and 6 were updated in v2 of this preprint. In v3, figures 1 and 2 have been updated, while Table II and the abstract have been extended. In v4, Table I has updated with relevant neutron diffraction dat

    Comparison of approximate intermolecular potentials for ab initio fragment calculations on medium sized N‐heterocycles

    Get PDF
    The ground state intermolecular potential of bimolecular complexes of N‐heterocycles is analyzed for the impact of individual terms in the interaction energy as provided by various, conceptually different theories. Novel combinations with several formulations of the electrostatic, Pauli repulsion, and dispersion contributions are tested at both short‐ and long‐distance sides of the potential energy surface, for various alignments of the pyrrole dimer as well as the cytosine–uracil complex. The integration of a DFT/CCSD density embedding scheme, with dispersion terms from the effective fragment potential (EFP) method is found to provide good agreement with a reference CCSD(T) potential overall; simultaneously, a quantum mechanics/molecular mechanics approach using CHELPG atomic point charges for the electrostatic interaction, augmented by EFP dispersion and Pauli repulsion, comes also close to the reference result. Both schemes have the advantage of not relying on predefined force fields; rather, the interaction parameters can be determined for the system under study, thus being excellent candidates for ab initio modeling

    Quantum information analysis of electronic states at different molecular structures

    Full text link
    We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization. We also discuss the application of the configuration interaction based dynamically extended active space procedure which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures to a great extent. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal orbital ordering and carry out efficient calculations on transition metal clusters. We propose a recipe to perform DMRG calculations in a black-box fashion and we point out the connections of our work to other tensor network state approaches
    corecore